Subtly Different Facial Expression Recognition and Expression Intensity Estimation
نویسندگان
چکیده
We have developed a computer vision system, including both facial feature extraction and recognition, that automatically discriminates among subtly different facial expressions. Expression classification is based on Facial Action Coding System (FACS) action units (AUs), and discrimination is performed using Hidden Markov Models (HMMs). Three methods are developed to extract facial expression information for automatic recognition. The first method is facial feature point tracking using a coarse-to-fine pyramid method. This method is sensitive to subtle feature motion and is capable of handling large displacements with sub-pixel accuracy. The second method is dense flow tracking together with principal component analysis (PCA), where the entire facial motion information per frame is compressed to a lowdimensional weight vector. The third method is high gradient component (i.e., furrow) analysis in the spatiotemporal domain, which exploits the transient variation associated with the facial expression. Upon extraction of the facial information, non-rigid facial expression is separated from the rigid head motion component, and the face images are automatically aligned and normalized using an affine transformation. This system also provides expression intensity estimation, which has significant effect on the actual meaning of the expression.
منابع مشابه
Facial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملImproving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value
Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...
متن کاملThe Effectiveness of Cognitive Empowerment of Mental Conditions in the Recognition of Facial Expression of Emotions in Addicts
Objective: The aim of this study was to investigate the effectiveness of cognitive empowerment of mental states in the recognition of facial expression of emotions in substance dependent individuals. Method: The present study employed a quasi-experimental design with pretest/posttest design and control group. A total of 30 addicts within the same age range, education level, and employment statu...
متن کامل